Как в домашних условиях сделать атомный реактор. Термоядерный реактор своими руками. Что вам понадобится

Люди уже не представляют себе жизнь без электричества, и с каждым годом потребность в энергии все больше растет, в то время как запасы энергоресурсов таких нефть, газ, уголь стремительно сокращаются. У человечества не остается других вариантов, как использование альтернативных источников энергии. Одним из способов получения электроэнергии является преобразование солнечной энергии с помощью фотоэлементов. То, что можно использовать энергию солнца люди узнали относительно давно, но активно развивать начали лишь в последние 20 лет. За последние годы благодаря не прекращающимся исследованиям, использованию новейших материалов и креативных конструкторских решений удалось значительно увеличить производительность солнечных батарей. Многие полагают, что в будущем человечество сможет отказаться от традиционных способов получения электроэнергии в пользу солнечной энергии и получать ее с помощью солнечных электростанций.

Солнечная энергетика

Солнечная энергетика один из источников получения электроэнергии не традиционным способом, поэтому относится к альтернативным источникам энергии. Солнечная энергетика использует солнечное излучение и преобразовывает его в электричество или в другие виды энергии. Солнечная энергия является не только экологически чистым источником энергии, т.к. при преобразовании солнечной энергии не выделяется вредных побочных продуктов, но еще энергия солнца самовосстанавливающийся источник альтернативной энергии.

Как работает солнечная энергетика

Теоретически рассчитать, сколько можно получить энергии от потока солнечной энергии несложно, давно известно, что пройдя расстояние от Солнца до Земли и падая на поверхность площадью 1 м² под углом 90°, солнечный поток на входе в атмосферу несет в себе энергетический заряд равный 1367 Вт/м², это так называемая солнечная постоянная. Это идеальный вариант при идеальных условиях, которых как мы знаем добиться практически не возможно. Таким образом после прохождения атмосферы максимальный поток который можно получить будет на экваторе и будет составлять 1020 Вт/м², но среднесуточное значение которое мы сможем получить будет в 3 раза меньше из-за смены дня и ночи и изменения угла падения солнечного потока. А в умеренных широтах к смене дня и ночи прибавляется еще и смена времен года, а с ним и изменение длительности светового дня, поэтому в умеренных широтах количество получаемой энергии сократится еще в 2 раза.

Развитие и распространение солнечной энергетики

Как мы все знаем, в последние несколько лет развитие солнечной энергетики с каждым годом все больше набирает темпы, но давайте попробуем проследить динамику развития. В далеком 1985 году мировые мощности, использующие солнечную энергию, составляли всего лишь 0,021 ГВт. В 2005 году они уже составляли 1,656 ГВт. 2005 год считают переломным в развитии солнечной энергетике, именно с этого года люди началось активно интересоваться исследованиями и развитием электросистем работающих на солнечной энергии. Далее динамика не оставляет сомнений (2008г-15,5 ГВт, 2009-22,8 ГВт, 2010-40 ГВт, 2011-70 ГВт, 2012-108 ГВт, 2013-150 ГВт, 2014-203 ГВт). Пальму первенства в использовании солнечной энергии держат страны Евросоюза и США, в производственной и эксплуатационной сфере только в США и Германии заняты больше 100 тыс. людей в каждой. Также своими достижениями в освоении солнечной энергии могут похвастаться Италия, Испания и, конечно же, Китай, который если и не является лидером в эксплуатации солнечных элементов то, как производитель фотоэлементов из года в год наращивает темпы производства.

Достоинства и недостатки использования солнечной энергии

Достоинства: 1) экологичность-не загрязняет окружающую среду; 2) доступность-фотоэлементы доступны в продаже не только для промышленного использования, но и для создания частных мини солнечных электростанций; 3) неисчерпаемость и само восстанавливаемость источника энергии; 4) постоянно снижающаяся себестоимость производства электроэнергии.
Недостатки: 1) влияние на производительность погодных условий и времени суток; 2) для сохранения энергии необходимо аккумулировать энергию; 3) меньшая производительность в умеренных широтах из-за смены времен года; 4)значительный нагрев воздуха над солнечной электростанцией; 5) потребность периодически очищать поверхность фотоэлементов от загрязнения, а это проблематично из за огромных площадей, занимаемых под установку фотоэлементов; 6) также можно сказать об относительно высокой стоимости оборудования, хоть с каждым годом себестоимость снижается, пока говорить о дешевой солнечной энергии не приходится.

Перспективы развития солнечной энергетики

На сегодняшний день развитию солнечной энергетики пророчат большое будущее, с каждым годом все больше строятся новые солнечные электростанции, которые поражают своими масштабами и техническими решениями. Также не прекращаются научные исследования, направленные на увеличение КПД фотоэлементов. Ученые посчитали, что если покрыть сушу планеты Земля на 0,07%, с КПД фотоэлементов в 10%, то энергии хватит более чем на 100% обеспечения всех потребностей человечества. На сегодняшний день уже используются фотоэлементы с КПД в 30%. По исследовательским данным известно, что амбиции ученых обещают довести его до 85%.

Солнечные электростанции

Солнечные электростанции это сооружения задачей, которых является преобразовывать потоки солнечной энергии в электрическую энергию. Размеры солнечных электростанций могут быть различными, начиная от частных мини электростанций с несколькими солнечными панелями и заканчивая огромными, занимающими площади свыше 10 км².

Какие бывают солнечные электростанции

Со времени постройки первых солнечных электростанций прошло довольно много времени, за которое было осуществлено множество проектов и применено немало интересных конструкционных решений. Принято делить все солнечные электростанции на несколько типов:
1. Солнечные электростанции башенного типа.
2. Солнечные электростанции, где солнечные батарей представляют собой фотоэлементы.
3. Тарельчатые солнечные электростанции.
4. Параболические солнечные электростанции.
5. Солнечные электростанции солнечно-вакуумного типа.
6. Солнечные электростанции смешанного типа.

Солнечные электростанции башенного типа

Очень распространенный тип конструкции электростанции. Представляет собой высокую башенную конструкцию на вершине, которой расположен резервуар, с водой выкрашенный в черный цвет для лучшего притягивания отраженного солнечного света. Вокруг башни по кругу расположены большие зеркала площадью свыше 2 м², они все подключены к единой системе управления, которая следит за изменением угла наклона зеркал, что бы они всегда отражали солнечный свет и направляли его прямиком на резервуар с водой расположенный на верхушке башни. Таким образом, отраженный солнечный свет нагревает воду, которая образует пар, а затем этот пар с помощью насосов подается на турбогенератор где и происходит выработка электроэнергии. Температура нагрева бака может достигать 700 °C. Высота башни зависит от размеров и мощности солнечной электростанции и, как правило, начинается от 15 м, а высота самой большой на сегодняшний день составляет 140 м. Такой тип солнечных электростанций очень распространен и предпочитается многими странами за свой высокий КПД в 20%.

Солнечные электростанции фотоэлементного типа

Используют для преобразования солнечного потока в электричество фотоэлементы (солнечные батареи). Данный тип электростанций стал очень популярным благодаря возможности использования солнечных батарей небольшими блоками, что позволяет применять солнечные батареи для обеспечения электричеством, как частных домов, так и крупных промышленных объектов. Тем более что КПД с каждым годом растет и на сегодняшний день уже существуют фотоэлементы с КПД 30%.

Параболические солнечные электростанции

Данный тип солнечной электростанции имеет вид огромных спутниковых антенн, внутренняя сторона которых покрыта зеркальными пластинами. Принцип, по которому происходит преобразование энергии, похож с башенными станциями с небольшим отличием, параболическая форма зеркал обусловливает, что солнечные лучи, отражаясь от всей поверхности зеркала, концентрируются в центре, где расположен приемник с жидкостью, которая нагревается, образуя пар, который в свою очередь и является движущей силой для небольших генераторов.

Тарельчатые солнечные электростанции

Принцип работы и способ получения электроэнергии идентичен солнечным электростанциям башенного и параболического типа. Отличие составляет лишь конструктивные особенности. На стационарной конструкции немного похожей на гигантское металлическое дерево, на котором развешены круглые плоские зеркала, которые концентрируют солнечную энергию на приемнике.

Солнечные электростанции солнечно-вакуумного типа

Это очень необычный способ использования энергии солнца и разности температур. Конструкция электростанции состоит из покрытого стеклянной крышей участка земли круглой формы с башней в центре. Башня внутри полая, в ее основании расположены несколько турбин, которые вращаются благодаря возникающему из-за разности температур потоку воздуха. Через стеклянную крышу солнце нагревает землю и воздух внутри помещения, а с внешней средой здание сообщается трубой и так как вне помещения температура воздух значительно ниже, то создается воздушная тяга, которая увеличивается с ростом разницы температур. Таким образом, ночью турбины вырабатывают электроэнергии больше чем днем.

Солнечные электростанции смешанного типа

Это когда на солнечных электростанциях определенного типа в качестве вспомогательных элементов используют, например солнечные коллекторы для обеспечения объектов горячей водой и теплом или возможно использование одновременно на электростанции башенного типа участков фотоэлементов.

Солнечная энергетика развивается высокими темпами, люди, наконец, то всерьез задумались об альтернативных источниках энергии, что бы предупредить неизбежно надвигающийся энергетический кризис и экологическую катастрофу. Хоть лидерами в солнечной энергетике по-прежнему остаются США и Евросоюз, но все остальные мировые державы постепенно начинают перенимать и использовать опыт и технологии производства и использования солнечных электростанций. Можно не сомневаться, что рано или поздно солнечная энергия станет основным источником энергии на Земле.

Вот хорошее видео (на английском). Оказывается, не так уж всё и сложно))


Некоторым удалось почти успешно. Один из таких умельцев - Дэвид Хан, американский школьник. Это реально круто!

Реактор в сарае

В раннем детстве Дэвид Хан был самым обычным ребенком. Белобрысый и неуклюжий мальчик играл в бейсбол и гонял футбольный мяч, а в какой-то момент вступил в бойскауты. Его родители Кен и Пэтти, развелись и Дэвид жил со своим отцом и мачехой, которую звали Кэти в местечке Клинтон. Выходные дни он обычно проводил в Голф Манор со своей матерью и ее другом, которого звали Майкл Поласек.

Резкие перемены произошли, когда ему исполнилось десять. Тогда отец Кати подарил Дэвиду книгу The Golden Book of Chemistry Experiments («Золотая книга химических экспериментов»). Он увлеченно зачитывался ею. В 12 лет он уже делал выписки из институтских учебников по химии своего отца, а в 14 лет он сделал нитроглицерин.

Однажды ночью их дом в Клинтоне дрогнул от мощного взрыва в подвале. Кен и Кэти обнаружили Дэвида в полубессознательном состоянии, лежащим на полу. Оказалось, что он измельчал какое-то вещество отверткой, и оно у него загорелось. Его срочно отвезли в госпиталь, где ему промыли глаза.

Кэти запретила заниматься экспериментами у нее дома, а потому он перенес свои исследования в сарай своей матери, в Голф Манор. Ни Пэтти ни Майкл не имели ни малейшего понятия, чем занят в сарае этот стеснительный подросток, хотя было странным то что он в сарае часто одевал защитную маску, а иногда снимал с себя одежду лишь около двух часов ночи, работая допоздна. Они списывали это все на свое собственное ограниченное образование.
Майкл, однако, припоминал, как Дэвид однажды сказал ему: «Когда-нибудь у нас кончится нефть».

Убежденный в том, что сыну нужна дисциплина, отец Дэвида - Кен считал, что решение вопроса состоит в цели, которую тот не может достигнуть - Скаутский Орел, для получения которого требовался 21 скаутский знак. Дэвид заработал знак за изучение атомной энергии в мае 1991 г., пять месяцев спустя своего пятнадцатилетия. Но теперь у него были более сильные амбиции.

Придуманная личность

Он решил, что будет заниматься просвечиванием всего, что сможет, а для этого ему надо построить нейтронную «пушку». Чтобы получить доступ к радиоактивным материалам, Дэвид решил использовать приемы из различных громких статей в журналах. Он придумал вымышленную личность.

Он написал письмо в Комиссию по Ядерному Регулированию (Nuclear Regulatory Commission (NRC)), в котором он утверждал, что является учителем физики в старших классах в Долине Чипева (Chippewa Valley High School). Директор агентства по производству и распространению изотопов, Дональд Эрб, описал ему в деталях выделение и получение радиоактивных элементов, а также объяснил характеристики некоторых из них, в частности, какие из них при облучении нейтронами, могут поддерживать цепную ядерную реакцию.

Когда Дэвид поинтересовался риском таких работ, то Эрб уверил его «что опасностью можно пренебречь», так как «для обладания любыми радиоактивными материалами в количествах и формах способных представлять угрозу требуется получение лицензии от Комиссии по Ядерному Регулированию или эквивалентной организации».

Дэвид читал, что крохотные количества радиоактивного изотопа америция-241 можно найти в детекторах дыма. Он связался с компаниями по изготовлению детекторов и сообщил им, что ему требуется большое количество этих устройств, для выполнения одного школьного проекта. Одна из компаний продала ему около сотни неисправных детекторов по доллару за штуку.

Он не знал, где точно в детекторе находится америций, а потому написал в одну из фирм в Иллинойсе, которая занималась электроникой. Сотрудница из службы по работе с клиентами компании ответила ему, что они будут рады ему помочь. Благодаря ее помощи, Дэвиду удалось извлечь материал. Он поместил америций внутри полого куска свинца с очень маленьким отверстием с одной стороны, из которого, как он рассчитывал, будут выходить альфа-лучи. Перед отверстием он поместил лист алюминия так, чтобы его атомы абсорбировали альфа-частицы и излучали нейтроны. Нейтронная пушка была готова.

Калильная сетка в газовом фонаре представляет собой небольшой рассекатель, через который проходит пламя. Оно покрыто составом, в который входил торий-232. При бомбардировке нейтронами из него должен был получиться расщепляемый изотоп уран - 233. Дэвид приобрел несколько тысяч калильных сеток в различных магазинах по продаже складских излишков и пережег их паяльной лампой в кучку золы.

Чтобы выделить торий из золы, он приобрел литиевых батарей на тысячу долларов и изрезал их все на куски ножницами по металлу. Он завернул литиевые обрезки и ториевую золу в шар из алюминиевой фольги и нагрел его в пламени бунзеновской горелки. Он выделил чистый торий в количестве большем, чем он встречается в природе в 9000 раз и в 170 раз больше уровня, которого требовало наличие лицензии NRC. Но нейтронная пушка Дэвида на основе америция не была достаточно мощной, чтобы торий превратился в уран.

Еще помощь от NRC

Дэвид старательно работал после школы в разного рода закусочных, бакалейных магазинчиках и мебельных складах, но эта работа была просто источником денег для его экспериментов. В школе он учился без особого усердия, никогда и ничем не выделялся, получил плохие оценки на общем экзамене по математике и тестах по чтению (но при этом показал отличные результаты по естествознанию).

Для новой пушки он хотел найти радий. Дэвид начал лазить по окрестным свалкам и антикварным магазинам в поисках часов, где, в светящейся краске циферблата использовался радий. Если такие часы ему попадались, то он соскребал с них краску и складывал ее в пузырек.

Однажды он медленно прогуливался по улице городка Клинтон, и как он рассказывал, в одной из витрин антикварного магазина, ему попались на глаза старые настольные часы, которые его заинтересовали. При близком «хаке» часов он обнаружил, что тут можно наскрести целый пузырек радиевой краски. Он купил часы за $10.

Потом он занялся радием и перевел его в форму соли. Понимал он это или нет, но в этот момент он подвергал себя опасности.

Эрб из NRC сообщил ему, что «лучший материал из которого альфа-частицы могут продуцировать нейтроны - это бериллий». Дэвид попросил своего друга, чтобы тот стащил для него бериллий из химической лаборатории, а затем поместил его перед свинцовой коробкой, внутри которой находился радий. Его занятной пушке из америция на замену пришла более мощная радиевая пушка.

Дэвид сумел найти некоторое количество смоляной (урановой) обманки, руды, в которой уран содержится в небольших количествах, и раздробил ее кувалдой в пыль. Он направил лучи из его пушки на порошок, в надежде, что ему удастся получить, хотя бы некоторое количество расщепляемого изотопа. У него не получилось. Нейтроны, представлявшие снаряды в его пушке, двигались слишком быстро.

«Неминуемая опасность»

После того как ему исполнилось 17 лет, Дэвидом овладела идея построения модели бридерного реактора, то есть такого ядерного реактора, который не только генерировал электричество, но и производил новое топливо. В его модели должны были использоваться настоящие радиоактивные элементы и происходить настоящие ядерные реакции. В качестве рабочего чертежа он собирался использовать схему, которую он нашел в одном из учебников своего отца.

Всячески пренебрегая техникой безопасности, Дэвид смешал радий и америций, которые находились у него на руках вместе с бериллием и алюминием. Смесь была завернута в алюминиевую фольгу, из которой он сделал подобие рабочей зоны ядерного реактора. Радиоактивный шар был окружен небольшими, завернутыми в фольгу кубиками из ториевой золы и урановой пудры, связанные вместе сантехническим бинтом.

«Он был радиоактивен, как черт знает что», - говорил Дэвид, - «гораздо больше, чем в разобранном состоянии». Тут он начал понимать, что подвергает себя и окружающих серьезной опасности.

Когда счетчик Гейгера, который был у Дэвида начал регистрировать радиационное излучение за пять домов от местожительства его матери, он решил что у него «слишком много радиоактивных веществ в одном месте», после чего он решил разобрать реактор. Он спрятал часть материалов в доме матери, оставил некоторую часть в сарае, а оставшееся сложил в багажник своего «Понтиака».

В 2:40 ночи 31 августа, 1994 г. в полицию Клинтона, позвонил неизвестный и сообщил, что какой-то молодой человек, похоже, пытается украсть покрышки от машины. Когда полиция приехала, Дэвид сказал им, что он собирается встречать своего друга. Полиции это показалось неубедительным, и они решили осмотреть автомобиль.

Они открыли багажник и обнаружили в нем ящик из под инструментов, который был закрыт на замок и замотан сантехническим бинтом. Здесь же лежали замотанные в фольгу кубики с каким-то загадочным серым порошком, небольшие диски, цилиндрические металлические предметы, а также ртутные реле. Полицейских сильно насторожила коробка из под инструментов, про которую Дэвид сказал им, что она радиоактивна, и они боялись ее как атомной бомбы.

Был введен в действие федеральный план противодействия радиоактивной угрозе, а официальные лица штата начали консультироваться с EPA и NRC.

В сарае, эксперты-радиологи обнаружили алюминиевую форму для выпечки пирогов, чашку Pyrex из огнеупорного стекла, ящик из-под молочных бутылок, а также массу других вещей, которые были заражены радиацией, уровень которой в тысячу раз превышал естественный. Так как ее могло разнести по округе ветром и дождем, а также отсутствием сохранности в самом сарае, то в соответствии с меморандумом EPA,» это представляло собой неминуемую угрозу общественному здоровью».

После того как рабочие в защитных костюмах разобрали сарай, они сложили все, что оставалось в 39 бочек, которые были погружены на грузовики и вывезены на могильник в Великую Соляную Пустыню. Там, останки экспериментов Дэвида были захоронены вместе с другим радиоактивным мусором.

«Это была ситуация, которую регулирование было не в силах предвидеть», - сказал Дэйв Минаар, эксперт-радиолог из Мичиганского Департамента Качества Окружающей Среды, - «Считалось, что обычный человек не сможет получить в руки технологию или материалы, которые требуются для занятий экспериментами в этой области».

Сейчас Дэвид Хан сейчас находится в ВМФ, где он читает о стероидах, меланине, генетическом коде, прототипах реакторов, аминокислотах и уголовном праве. «Я хотел, чтобы в моей жизни было что-нибудь заметное», - объясняет он теперь. «У меня еще есть время». По поводу получения им дозы радиации, он сказал, - «Я не думаю, что отнял у себя больше, чем пять лет жизни».

почитав один специализированый блог, пообщавщись с авторомм и его сокамерниками пользователями... что могу сказать - агресивные товарищи. за огрессией я вижу плохое знание элементарных физических процессов, но да бог с ними.

хочется поговорить немного о термоядерном синтезе, как я уже отмечал существует энегия связи т.е. энергия связанного состояния т.е. если что-то целое поломать, то в поломаном сотоянии это весит тяжелее чем в целом. так как дядя Алберт установил связь между массой и энергией можно оценить сколько усилий нужно затратить на слом, просто взвещивая "осколки" и сравнивая с весом свзанного состояния.

надо сказть что это величина исчезающи мала и горить об энерги связи скажем расколотого и целого кирпича особого смысла в повседневной жизни нет.

что же касается ядерной энергетики то можно назвать два вида реакций с выделением энергии - это "развал" тяжелых ядер на более легкие и наоборот слиние легких ядер в нечто тяжелое. нас конечно интересут реакции идущие с выделением энергии.

что же вспомним наше наше недавнее прошлое.

как запустить термоядерную реакцию на коленке? да элементарно. нам нужны только компонены реакции, глубокий вакуум и высокое напряжение.

ведь ионизировать газ можно целой кучей способов. самы простой - создать необходимую напряженность электрического поля. я не буду здесь подробно описывать конструкцию благо и описывать особо нечего - это в общем-то два шарика один в другом, внутренний делают из тугоплавкой проволоки. между шариками создают большую разность потенциалов - все. если в шарике (внешнем) напримере пары детерия все пойдет как по маслу. т.е. основным компонентом видится тяжелая вода. она легко добывается. процесс не быстрый. суть сводится к тому, что изотопы дейтерия имеют чуть разные физические свойства в сравнии с обычным водородом. и просто испаряя и замораживая воду можно "надыбать немного дейтерия". может возможны и другие более быстрые варианты сепарации.

кстаи напряжение нужно довольно большое - десятки киловолт я слышал про значения 40 кВ. все просто и элементарно. можно подпихнуть гуглу ключ типа "термоядерный реактор своими руками", можно пойти в ютуб и забить в местный поисковик слово fusor.

все просто и элементарно.

возникает вопрос почему никто не развивает данный тип реакторов? мировая закулиса мешает али еще что?

ответ простой - плазма не удерживается. т.е. даже если ионам удалось преодалеть кулоновский барьер и реакция произошла, что кстати видно по детектору нейтронов, то на этом в общем-то все. современные реакторы работают иначе - они представляют из себя ловушку в которой находится плазма, плазму необходимо зажечь, а дальше реакция выходит на самоподдержку без подвода энергии из вне. плазму кстати все еще надо удерживать:)

эта "замануха" тащет человечество за нос не одно десятилетие, суля ему решение многих энергетических проблем, но удержание плазмы процесс кропотливый и творческий, и не решенный до конца. дай бог ITER достроят и явят миру демонстрацию термоядерной энергетики. есть некоторые основния для оптимизма, но лично я отношусь скептичеески. даже если все получится и все будет работать - построить такую установку в "одно лицо" в ряд ли выйдет. сответсвенно это поиск новых режимов плазмы, новых методов удержания и т. п. все что позволит снизить стоимость установки.

сейчас снова заговорили об ловушках открытого типа - это более дешевый вариант, а новые знания позволили удерживать плазму значительно дольше чем раньше, однако до практической пригодности результатов экспериментов говорить не приходится.

если вы жить не можите без потока нейтронов, то вам просто необходимо собрать fusor, если же вы ищите какой-то практической пользы, то вам не надо этого делать.

к тому же я думаю развитие алтернативной энергетики тоже нельзя сбрасывать со счетов. есть очень дешевые и эфективные методы строительства сверхдальных линий энергопередачи, об одном таком методе , рост кпд солнечных модулей, о чем тоже я писал, развитие систем сохранения энегии. не знаю миром правяят деньги, конечно идея "термояда" такая романтическо-экзотичекая-футуристическая, но в жизни как правило верх берет рационализм.

Как известно пользователям вопрос, волнует каждого. Особенно на фоне постоянного роста цен на энергоносители. И если вы ещё не решили, откуда получать тепло и электричество, то исследователи из Америки предлагают избавить вас от этой головной боли на ближайшие 10 лет.

Десять лет тепла и света по цене в 10 центов за один киловат/час. Звучит заманчиво, не правда ли? По крайней мере, именно об этом говорится в пресс-релизе компании Hyperion Power Generation, продвигающей на рынокчастного домостроительствапортативную атомную установку под названием Hyperion.

Отличаясь необычайно малыми размерами – высота установки около трёх метров, и автономностью – срок работы реактора на одной заправке больше десяти лет, мини-станция мощностью в 25 мегаватт сможет стать незаменимым источником энергии для коттеджных поселений, фермерских хозяйств и небольших промышленных предприятий.

Как сделать очаг из обычной свечи читайте .

И хотя цена в 25$ миллионов поначалу может показаться неоправданно высокой, представители компании говорят, что если Hyperion купят примерно 10 тысяч домовладельцев, то затраты каждого не превысят 2500$.

А учитывая низкую стоимость электроэнергии вырабатываемой установкой, и безопасность её работы, такое частное поселение становится полностью энергонезависимым от государственных энергосетей.

Несмотря на то, что в последние годы было несколько аварий, связанных с утечкой радиоактивных элементов – достаточно вспомнить катастрофу в Японии на АЭС Фукусима, разработчики Hyperion заявляют – их установка, работающая на низкообогащённом уране, может быть смонтирована даже в частного дома.

Конечно, в реальной жизни так никто поступать не будет – ректор должен находиться глубоко под землёй в специальной бетонной рубашке. Но отсутствие сложной автоматики, саморегулирующуюся система охлаждения и конструкция реактора не позволяет ему выйти на сверхкритический режим работы, при котором было бы возможно расплавление ядра, что обеспечивает гораздо большую безопасность работы, чем обычная АЭС.

Систему не требуется обслуживать. Процесс перезагрузки топлива происходит на заводе изготовителе – для чего раз в 10 – 15 лет реактор потребуется извлечь и отвезти для перезаправки.

Hyperion Power Generation уже поставила несколько таких реакторов в Румынию, а благодаря повышенному интересу к разработке, уже ведутся переговоры по установке Hyperion в коттеджные поселения в Южной Америке. Всего же компания предполагает продать больше 4000 реакторов за ближайшие 10 лет.

Но если американцы только в начале пути, то японская компания Toshiba уже давно предложила жителям маленького города Галена, что расположен на Аляске, установить сверхминиатюрный ядерный реактор Toshiba 4S .

Причём поселенцам в количестве всего в 700 человек даже не придётся тратиться на покупку реактора размером с холодильник. Специалисты из компании Toshiba в рамках рекламной компании предложили им бесплатную установку и обслуживание мини-станции 4S мощностью всего в 10 мегаватт.

Жители удалённого городка, обогревающие свои дома , будут платить от 5 до 10 центов за киловатт-час. А срок службы установки до первой перезагрузки топлива составит 30 лет.

О том, как выбрать источник альтернативного отопления для дома рассказывается

Японцы предлагают использовать данный реактор в качестве элемента питания для опреснительной установки по производству чистой воды, которая может быть востребована в жарких странах расположенных на берегах океанов и морей.

Также представители компании заявляют о начале разработки ещё более компактной модели портативного ядерного реактора мощностью в 200 киловатт, предназначенной для системы электроснабжения, одного коттеджа на протяжении более 40 лет.

Подведя итог можно сказать, что если раньше владельцы частных домов стремились подключиться к централизованным энергоносителям, то сейчас, всё большую популярность приобретает движение за полностью .

О том, как построить полностью автономный дом пользователи могут нашего форума. Обсуждение чем топить большой дом при отсутствии газа ведётся .

А в этом видеосюжете рассказывается о том, как увеличить электрическую мощность вашего дома с помощью инвертора.

1. Свободнопоршневой двигатель Стирлинга работает от нагревания «атомным паром» 2. Индукционный генератор дает около 2 Вт электроэнергии для питания лампы накаливания 3. Характерное голубое свечение — это черенковское излучение электронов, выбитых из атомов гамма-квантами. Может служить в качестве отличного ночника!


Для детей от 14 лет Юный исследователь сможет самостоятельно собрать пусть и маленький, но настоящий ядерный реактор, узнать, что такое мгновенные и запаздывающие нейтроны, и увидеть динамику разгона и торможения цепной ядерной реакции. Несколько простых опытов с гамма-спектрометром позволят разобраться с наработкой различных продуктов деления и поэкспериментировать с воспроизводством топлива из модного ныне тория (кусочек сульфида тория-232 прилагается). Входящая в комплект книга «Основы ядерной физики для самых маленьких» содержит описание более 300 опытов с собранным реактором, так что простор для творчества огромен


Исторический прототип Набор Atomic Energy Lab (1951) давал возможность школьникам приобщиться к самой передовой области науки и технологии. Электроскоп, камера Вильсона и счетчик Гейгера-Мюллера позволяли провести множество интереснейших опытов. Но, конечно, не настолько интересных, как сборка действующего реактора из российского набора «Настольная АЭС»!

В 1950-х годах, с появлением атомных реакторов, перед человечеством, казалось бы, замаячили блестящие перспективы решения всех энергетических проблем. Инженеры-энергетики проектировали атомные электростанции, судостроители — атомные электроходы, и даже автоконструкторы решили присоединиться к празднику и использовать «мирный атом». В обществе возник «атомный бум», и промышленности стало не хватать квалифицированных специалистов. Требовался приток новых кадров, и была развернута серьезная образовательная компания не только среди студентов университетов, но и среди школьников. Например, A.C. Gilbert Company выпустила в 1951 году детский набор Atomic Energy Lab, содержащий несколько небольших радиоактивных источников, необходимые приборы, а также образцы урановой руды. Этот «наисовременнейший научный набор», как было написано на коробке, позволял «юным исследователям провести более 150 захватывающих научных экспериментов».

Кадры решают все

За прошедшие полвека ученые получили несколько горьких уроков и научились строить надежные и безопасные реакторы. И хотя сейчас в этой области наблюдается спад, вызванный недавней аварией на Фукусиме, вскоре он вновь сменится подъемом, и АЭС по‑прежнему будут рассматриваться как чрезвычайно перспективный способ получения чистой, надежной и безопасной энергии. Но уже сейчас в России чувствуется дефицит кадров, как ив 1950-х. Чтобы привлечь школьников и повысить интерес к атомной энергетике, Научно-производственное предприятие (НПП) «Экоатомконверсия», взяв пример с A.C. Gilbert Company, выпустила образовательный набор для детей от 14 лет. Разумеется, наука за эти полвека не стояла на месте, поэтому, в отличие от своего исторического прототипа, современный набор позволяет получить намного более интересный результат, а именно — собрать на столе самый настоящий макет атомной электростанции. Разумеется, действующий.

Грамотность с пеленок

«Наша компания родом из Обнинска- города, где атомная энергия знакома и привычна людям чуть ли не с детского сада, — объясняет «ПМ» научный руководитель НПП «Экоатомконверсия» Андрей Выхаданко. — И все понимают, что бояться ее совершенно не надо. Ведь по‑настоящему страшна лишь неизвестная опасность. Поэтому мы и решили выпустить этот набор для школьников, который позволит им вдоволь поэкспериментировать и изучить принципы работы атомных реакторов, не подвергая себя и окружающих серьезному риску. Как известно, знания, полученные в детстве, самые прочные, так что выпуском этого набора мы надеемся значительно понизить вероятность повторения Чернобыля или

Фукусимы в будущем».

Ненужный плутоний

За годы работы множества АЭС скопились тонны так называемого реакторного плутония. Он состоит в основном из оружейного Pu-239, содержащего около 20% примеси других изотопов, в первую очередь Pu-240. Это делает реакторный плутоний абсолютно непригодным для создания ядерных бомб. Отделение примеси оказывается весьма сложным, так как разница масс между 239-м и 240-м изотопами — всего 0,4%. Изготовление ядерного топлива с добавкой реакторного плутония оказалось технологически сложным и экономически невыгодным, так что этот материал остался не у дел. Именно «бросовый» плутоний и использован в «Наборе юного атомщика», разработанном НПП «Экоатомконверсия».

Как известно, для начала цепной реакции деления ядерное топливо должно иметь определенную критическую массу. Для шара из оружейного урана-235 она составляет 50 кг, из плутония-239 — только 10. Оболочка из отражателя нейтронов, например бериллия, может снизить критическую массу в несколько раз. А использование замедлителя, как в реакторах на тепловых нейтронах, снизит критическую массу более чем в десять раз, до нескольких килограммов высокообогащенного U-235. Критическая масса Pu-239 и вовсе составит сотни граммов, и именно такой сверхкомпактный реактор, умещающийся на столе, разработали в «Экоатомконверсии».

Что в сундучке

Упаковка набора скромно оформлена в черно-белых тонах, и лишь неяркие трехсегментные значки радиоактивности несколько выделяются на общем фоне. «Никакой опасности на самом деле нет, — говорит Андрей, указывая на слова «Совершенно безопасно!», написанные на коробке. — Но таковы требования официальных инстанций». Коробка тяжеленная, что неудивительно: в ней находится герметичный транспортировочный свинцовый контейнер с тепловыделяющей сборкой (ТВС) из шести плутониевых стержней с циркониевой оболочкой. Помимо этого набор включает внешний корпус реактора из термостойкого стекла с химической закалкой, крышку корпуса со стеклянным окном и гермовводами, корпус активной зоны из нержавеющей стали, подставку под реактор, управляющий стержень-поглотитель из карбида бора. Электрическая часть реактора представлена свободнопоршневым двигателем Стирлинга с соединительными полимерными трубками, маленькой лампой накаливания и проводами. В комплект также входят килограммовый пакет с порошком борной кислоты, пара защитных костюмов с респираторами и гамма-спектрометр со встроенным гелиевым детектором нейтронов.

Постройка АЭС

Сборка действующего макета АЭС по прилагаемому руководству в картинках очень проста и занимает менее получаса. Надев стильный защитный костюм (он нужен только на время сборки), вскрываем герметичную упаковку с ТВС. Затем вставляем сборку внутрь корпуса реактора, накрываем корпусом активной зоны. Под конец защелкиваем сверху крышку с гермовводами. В центральный нужно вставить до конца стержень-поглотитель, а через любой из двух других заполнить активную зону дистиллированной водой до черты на корпусе. После заполнения к гермовводам подключаются трубки для пара и конденсата, проходящие через теплообменник двигателя Стирлинга. Сама АЭС на этом закончена и готова к запуску, остается лишь поместить ее на специальную подставку в аквариум, заполненный раствором борной кислоты, который отлично поглощает нейтроны и защищает юного исследователя от нейтронного облучения.

Три, два, один — пуск!

Подносим гамма-спектрометр с датчиком нейтронов вплотную к стенке аквариума: небольшая часть нейтронов, не представляющая угрозы для здоровья, все-таки выходит наружу. Медленно поднимаем регулировочный стержень до начала быстрого роста потока нейтронов, означающего запуск самоподдерживающейся ядерной реакции. Остается только дождаться выхода на нужную мощность и на 1 см по меткам вдвинуть стержень назад, чтобы скорость реакции стабилизировалась. Как только начнется кипение, в верхней части корпуса активной зоны появится прослойка пара (перфорация в корпусе не позволяет этой прослойке оголить плутониевые стержни, что могло бы привести к их перегреву). Пар по трубке идет вверх, к двигателю Стирлинга, там он конденсируется и стекает по выходной трубке вниз внутрь реактора. Разность температур между двумя концами двигателя (один нагревается паром, а другой охлаждается комнатным воздухом) преобразуется в колебания поршня-магнита, а тот, в свою очередь, наводит переменный ток в окружающей двигатель обмотке, зажигая атомный свет в руках юного исследователя и, как надеются разработчики, атомный интерес в его сердце.

Примечание редакции: данная статья опубликована в апрельском номере журнала и является первоапрельским розыгрышем.

Похожие публикации